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1. Objective 

The objectives of this work are to incorporate dislocation transport into a continuum crystal 

plasticity formulation, implement the model into a finite element code, and evaluate the model’s 

ability to capture effects of dislocation aggregation, specifically, the grain boundary 

strengthening effects and stress concentrations at grain boundaries. 

2. Approach 

The intent is to develop an enhancement to traditional continuum crystal plasticity models that 

can be readily incorporated into existing finite element implementations and run with minimal 

additional computational overhead. This goal is facilitated by targeting explicit dynamic 

solutions where, because of the relatively small time steps, it is often possible to impose 

additional constraints through an operator-split approach. Details of the crystal plasticity model 

and the time integration are reported elsewhere (1), and only the modifications related to the 

constraint of the dislocation flux are presented herein. 

2.1 Flux Constraint 

The basic model is that dislocations move along the slip direction from one element to another. 

The flux of dislocations crossing an element boundary for each slip system is 

                                                                  
                                                                                

where     
  is the dislocation density,    is the dislocation velocity,    is the slip direction, and 

   is the outward normal to the given element face. Continuity is enforced by requiring that the 

dislocation flux exiting through an element face equals the flux entering the adjacent element 

through the common face. The dot product in equation 1 accounts for the orientation of the slip 

system with respect to the element face. It is zero if the slip direction is parallel to the face. This 

provides the opportunity for sharp jumps in slip rates across parallel slip planes while enforcing 

continuity along slip planes. 

The dislocation density, velocity and the Burgers vector, b, are related to the continuum slip rate 

by Orowan’s equation 

        
                                                                            

For a shared element face, and assuming that the Burgers vector is constant and that the slip 

directions are closely aligned across the interface, the continuity error in the accumulated 

dislocation flux between elements can be approximated as 
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The subscripts e and neighbor on the accumulate slip,   , denote, respectively, the element of 

interest and the neighbor sharing the face. The approach taken is to penalize the error. It is not 

necessary to assume that the Burgers vectors are equal or that the slip directions in the adjacent 

elements are aligned, but these simplifications are made for expedience and coding clarity in this 

initial implementation. 

With some adjustments (1), the driving force for the penalty method, equation 3 is summed as 

 

        
 

 

  
Sign                           

     

      

   

                                         

   is the distance between element centroids associated with the particular element face. It is 

intended to provide a larger penalty if the slip difference occurs on a smaller spatial grid.    in 

equation 4 is a weighted sum of unsigned slip gradients on a slip system for a given element. If 

the value is positive, slip is deficient in the element and additional slip is promoted. If the value 

is negative, further slip is impeded. It is significant that a constant gradient results in face 

contributions that sum to zero. Hence, a constant gradient is not suppressed. The excess 

dislocations associated with the gradient are assumed to be uniformly distributed.  

Close examination of equation 4 reveals that the constraint resembles the micro force balance in 

several gradient formulations (2, 3). Hence, with a small coding change using the square of    in 

the denominator, the implementation approximates a simplified version of established gradient 

models.  

The flow strength in the power law slip rate model,   , is adjusted, based on the nonlocal 

contribution, to increase or reduce the resistance to continued deformation 

     
               

  

  
                                                                        

Here,    and    are dimensionless parameters,   is some average shear modulus for the crystal, 

and   is the Burgers vector. The base crystal strength,   
 , could be a function of slip to capture 

strain hardening, but it is assumed constant in these analyses to simplify interpretation of the 

results. The hyperbolic tangent function is used to cap the influence of the nonlocal term. The 

contribution is approximately linear,      
    , while the argument is small, and it is caped at a 

constant value of     . The penalty parameters are chosen as           and         . 

In all of the nonlocal continuum simulations, the base flow strength is   
        MPa; the 

density is    2.7 g/cm
3
; the Burgers vector is       nm; and shear modulus is  

         MPa. A low power law rate exponent,        , is chosen to provide nearly rate-

independent behavior while still smoothing the transition from elastic to plastic response at the 

slip system flow strength,   .  



3 

2.2 Model Geometry 

An idealized two-dimensional crystal geometry is used for these analyses. The crystal consists of 

three slip systems set in an equilateral triangle configuration. This allows a multitude of slip 

modes. The model was implemented in the large-scale parallel, explicit finite element code 

ALE3D (4), and details are provided elsewhere (1). The crystal plasticity constitutive model 

existed previously (5) and the strengthening terms in equation 5 due to the nonlocal effects were 

a straightforward addition. 

Constant strain quadrilateral elements with hourglass control (6) are used for all of the 

simulations. Elements in which all four faces are adjacent to an element of the same initial 

orientation are interior elements, and gradients are computed directly as indicated in equation 7. 

Elements with fewer than four faces contacting regions of the same orientation are either on 

grain boundaries or model boundaries. The face is flagged for these elements, and a parameter is 

checked to see whether it is treated as a zero flux boundary or a free boundary with no slip 

impedance. For the non-interior elements with zero-flux boundaries, ghost elements with 

opposite slip are assumed across the flagged faces. Grain boundaries and surfaces with applied 

boundary conditions are treated in this manner. For free surfaces and periodic boundaries, the 

ghost element across the flagged face is set with the same slip so that these interfaces do not 

contribute to the gradient.    

3. Results  

The effect of the slip continuity constraint (slip gradient) is evaluated on two configurations, 

each at multiple length scales. All simulations are two-dimensional. The first configuration is 

simple shear of a single crystal with one of the slip planes initially aligned orthogonal to the 

shear direction. This creates single slip conditions for a straightforward evaluation of the model. 

The second configuration is a polycrystal constructed from regular hexagons. The orientation of 

the crystal lattice for each grain is chosen at random.  

3.1 Single Crystal Simulations 

Single crystal calculations were run at four size scales using a 20  100 mesh of square elements 

(figure 1). Velocity boundary conditions are applied to the upper and lower surfaces to shear the 

top of the crystal to the right. Initial velocities of all interior nodes are prescribed consistent with 

simple shear to eliminate ringing as the explicit dynamic calculation starts. Periodic boundary 

conditions are applied to the lateral surfaces to mimic an infinitely wide crystal. The heights of 

the single crystals simulated were 50, 5, 1, and 0.5 µm, and the width of the simulation box was 

20% of the height in each case. Although the width is irrelevant with the periodic boundary 

conditions, multiple elements are used across the width to demonstrate that the boundary 
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conditions are applied properly. Slip transmission is restrained on the upper and lower 

boundaries, and slip transmission is unimpeded on the lateral, periodic boundaries. 

 

Figure 1.  Initial configuration for the single crystal and the crystal lattice  

orientation. The bottom is fixed and the top is moved to the right.  

Periodic boundary conditions are applied coupling the left and right  

hand sides. 

The nonlocal strength contribution to equation 5 is shown in figure 2 for the four crystal sizes 

and at two shear strains. The largest crystal in on the left and the smallest is on the right. The top 

row shows the distribution at a shear strain of 0.03 and the shear strain is 0.05 in the bottom row. 

The color scales are different for each crystal size, but the scales at each crystal size are the same 

at 0.03 and 0.05 shear strains to highlight the evolution. 

Lattice 
orientation 

Periodic boundary 

conditions 

Velocity boundary 

condition 
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Figure 2.  Distribution of the nonlocal contribution to the strength on the slip system aligned vertically in the crystal, 

for the crystal thicknesses indicated, at shear strains of 0.03 and 0.05. 

The magnitude of the nonlocal strength contribution and the relative depth that the distribution 

penetrates from the surfaces increases as the crystal thickness is decreased. The sharpest 

gradients are expected at the crystal surfaces where the slip transmission is impeded. For the 

50-µm crystal the strength is increased only within a few elements of the surface, corresponding 

to a few microns. The central portion of the crystal sees no gradient or strengthening effect, even 

as the strain increases from 0.03 to 0.05. The boundary layer also appears to penetrate a few 

microns in the 5-µm-thick crystal simulation. However, a smaller portion of the crystal is nearly 

free of gradient effects for this smaller crystal. At yet smaller crystal thicknesses, the gradient 

effect penetrates the full crystal thickness, and the evolution with increasing deformation is 

evident. The strength at the center is elevated significantly by a strain of 0.03, and it continues to 

increase with further deformation.  

0.03 shear 

strain 

0.05 shear 

strain 

50 m thick 5 m thick 1 m thick 0.5 mm thick 
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The minimum and maximum values are indicated in each of the plots. Except for the smallest 

crystal, the difference between the maximum and minimum increases as the crystal size 

decreases, and the difference also increases with increasing strain. The increase with strain 

indicates that the gradient is still evolving at a shear strain of 0.05. The trends are different for 

the 0.5-µm crystal because the gradient strengthening is beginning to run up against the cap set 

by the hyperbolic tangent function in equation 5. With continued deformation, the gradient 

strengthening is becoming more uniform, albeit at a higher level.  

The momentum balance in the vertical direction (y-direction) dictates that the y-gradient in the y-

direction stress component is balanced by the horizontal (x-direction) gradient in the shear stress. 

Since the periodic boundary conditions require that all horizontal gradients are zero, the stress in 

the y-direction should be constant. The magnitude of the y-direction stress is not determined by 

the momentum equation, just that it is constant. The calculations show a constant y-direction 

stress to five significant digits.  

More important for current purposes is the momentum balance in the horizontal direction. The 

lack of stress gradients in the horizontal direction requires the shear stress to be constant through 

the thickness. The simulations show that the shear stress is constant to five significant digits. 

While the x-direction stress must be constant in the x-direction, the symmetry conditions and 

momentum equations provide no further constraints restricting its gradient in the y-direction. 

The normalized slip rates corresponding to the configurations in figure 2 are shown in figure 3. 

Again, the largest crystal is on the left and the smallest is on the right. The top row contains 

results at a shear strain of 0.03, and results at a shear strain of 0.05 are shown in the bottom row. 

The plots are normalized by the applied shear strain rate so that a value of 1.0 would indicate a 

uniform shear. Since the shear stress and the reference strength are both constant, the slip rate is 

approximately related to the gradient term in equation 5. Second-order factors influencing the 

slip rate include the change in lattice orientation and non-zero components of the x-direction and 

y-direction stresses that modify the resolved shear stress.  

The slip rate follows the same trends as the nonlocal hardening contribution. The variation in slip 

rate is greater for the smaller crystals; and, except for the smallest crystal, the differences are 

greater with increased deformation. As a result of the boundary conditions, slip rates are low at 

top and bottom boundaries compared to the center regions. This results in the sigmoidal 

deformed shapes. More severe differences in slip rate result in greater deviation from a linear 

shear deformation profile. The slip rates for the 0.5-µm crystal become more uniform at the 

higher deformation because the gradient term is capped by the hyperbolic tangent function. The 

strength is more uniform, which results in a more uniform slip rate.  
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Figure 3.  Distribution of the normalized slip rate for single crystals of the indicated thickness and at shear strains 

of 0.03 and 0.05. The slip rates are normalized by the applied shear rate. 

The shear stress-shear strain responses for the various crystal thicknesses are plotted in figure 4. 

The curves are identical through the linear elastic regime, and all yield at approximately the same 

stress, approximately 34 MPa. The applied shear rate is 50 times the reference shear rate; and, 

accounting for the strain rate sensitivity, the apparent yield strength is calculated from the power 

law rate equation to be 33.99 MPa rather than the reference shear strength of 33.33 MPa.  

0.03 shear 

strain 

0.05 shear 

strain 

50 m thick 5 m thick 1 m thick 0.5 mm thick 
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Figure 4.  Shear stress-shear strain response predicted for the four  

crystal thicknesses. 

The stress shows the expected trend of increasing strength at the smaller crystal sizes. This is 

directly related to the nonlocal strength in figure 2. The nonlinear dependence on specimen 

dimensions is due to dividing by the element size squared in the modification to equation 5. The 

strain hardening rate is fairly consistent with increasing strain for the three larger crystal sizes 

but not for the smallest. Stress in the 0.5-µm crystal peaks as the hyperbolic tangent function 

places a cap on the nonlocal strength contribution. This is also consistent with the results 

presented in figures 2 and 3. A final observation from figure 4 is the kink that is most evident in 

the larger two specimens near a strain of 0.02. This marks the transition from single slip at lower 

strains to slip on two slip systems at larger strains. As the crystal lattice rotates and stresses build 

in the x and y directions, the crystals are able to accommodate the deformation more easily with 

multiple active systems. Due to the angle of the slip plane, slip constraints at the boundaries are 

not as severe for the second slip system, so the strain hardening rate is reduced.    

The effect of mesh resolution on the solution is investigated by rerunning the 5-µm-thick 

simulation using twice as many elements in each direction. The results from the 40  200 mesh 

are shown along side of the 20  100 mesh results in figure 5. Other than the expected 

differences in smoothness of the fields, the nonlocal stress and slip rate distributions do not 

appear to be influenced significantly by halving the mesh size.  
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Figure 5.  Comparison of nonlocal stress and the slip rate for the 20  100 and 40  200 element simulations of 

the 5-µm-thick single crystal. The results are shown at a 0.05 shear strain. 

For a more quantitative assessment, the applied shear stress computed at the crystal boundaries is 

2.3% lower for the finer mesh. Part of the difference may be due to the lower energy solution 

expected with an increased number of degrees of freedom, and the remainder can be attributed to 

discretization error associated with the nonlocal computations and the operator split algorithm. 

The time step was also a factor of two lower in the fine mesh calculation due to the dependence 

of the Courant stable time step on the mesh size. The smaller time step improves the accuracy of 

the operator split integration. 

The simulation of the 0.5-µm-thick crystal experienced numerical instabilities when the strain 

increment per step was too great. This is thought to be associated with the operator split where 

the strength increase from the slip gradients creates a driving force that is too large and over-

corrects the slip rate. Specifically, with a strain increment of 1.54  10
–7

 per time step, the slip 

rate for the 0.5-µm crystal was erratic and non-zero only in scattered, isolated elements. These 

isolated regions of slip occurred briefly and died out quickly as deformation proceeds, and 

eventually strain was incremented in the entire domain, albeit unevenly. When the time step was 

reduced by a factor of two, such that the strain increment per step was 7.43  10
–8

, the 

calculation was well behaved. The results in figures 2 through 4 were run with a strain increment 

of 3.853  10
–8

 to be certain that the time step was small enough to suppress the instability. The 

calculations for the larger crystal sizes experienced less gradient hardening, and they were run at 

the Courant stable time step without any additional time step controls. 

Nonlocal Stress Normalized Slip Rate 

20x100 40x200 40x200 20x100 
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3.2 Polycrystal Simulations 

An idealized polycrystal was created by filling a rectangular region with regular hexagonal 

grains (figure 6a). Simple shear boundary conditions were applied by prescribing velocities to 

the nodes on the upper and lower surfaces. Periodic boundary conditions were applied on the left 

and right surfaces. The orientation of the triangular crystal lattice in each of the grains was 

random, and the rotation angle from the reference orientation is indicated on the plot. The half 

grains at the same height on the left and right of the model region were given the same 

orientation to facilitate application of periodic boundary conditions. As with the single crystal 

simulations, the initial velocity of all interior nodes was prescribed to eliminate ringing from 

abrupt imposition of boundary conditions.  

 

Figure 6.  Grain structure (a) and finite element mesh and (b) for the polycrystal simulations. 

The default inter-element slip rate condition for all elements is that any element face touching 

another grain will have restricted slip. This is imposed by assuming that a ghost element across 

the interface has equal and opposite slip in equation 4. The restricted slip condition is enforced 

on the upper and lower surfaces and on grain boundaries, including those grain boundaries on the 

periodic surfaces. The half crystals on the periodic surfaces are treated differently; the element 

across the interfaces is assumed to have the same slip. This is not a truly periodic condition, but a 

data structure identifying periodic neighboring elements is not yet available.  

Three model sizes are investigated:                ,              , and  

             . All use the same mesh configuration, scaled to give the appropriate 

dimensions. Each of the 88 hexagons was discretized by an identical mesh of 2112 quadrilateral 

a) b) 
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elements (figure 6b). Nodes are shared along the grain boundaries, so the deformation is 

continuous throughout.  

Slip rates normalized by the applied shear rate are shown in figure 7 for the three polycrystal 

sizes. At the larger crystal size the strain rate localizes into well-defined bands. The majority of 

the deformation is carried by two horizontal bands with some scattered activity in the central 

region of the model. Blocks of grains appear to remain elastic while localized shear along the 

horizontal and vertical bands accommodates the deformation between neighboring blocks. The 

bands do not follow the grain boundaries, but many are associated with grain boundary triple 

points. 

 

Figure 7.  Normalized slip rate distribution for simple shear deformation of idealized polycrystals with heights of 

330, 33, and 3.0 µm. The color scale is the same for all three plots. 

At the intermediate polycrystal size the nonlocal slip constraint diffuses the deformation. The 

slip bands are still fairly well defined, but the peak strain rates are not as high and regions of 

nearly elastic behavior are smaller and less well defined. The slip rates in the 3.3-µm-thick 

polycrystal are considerably more diffuse and the material near the highly constrained top and 

bottom boundaries has the lowest strain rates. Grain outlines are evident as the slip rate tends to 

be high or low at the grain boundaries, and the color contrast across the boundaries accentuates 

them. 

The nonlocal strengthening associated with the gradients is shown in figure 8 for all three slip 

systems and the three crystal sizes. The color scale in each row is the same so that the magnitude 

of the effect of the slip systems can be compared. The scales are different for each crystal size as 

the strengthening is much greater in the smaller model region. The color scale for the 330 mm 

polycrystal is set to a relatively low value of 0.5 MPa, and even then, the gradient contribution is 

only evident at the grain boundaries or near the most highly shear regions shown in figure 7. The 

impact on the solution is minor.  

330 m high 33 m high 3.3 m high 
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Figure 8.  Nonlocal strength contributions on the three slip systems for polycrystal model sizes of 330, 33, and 

3.3 m. The color scales are consistent within each row. 

The nonlocal strength distribution in the 33-µm polycrystal appears in the grain interiors as well 

as at the grain boundaries. The strong interior features are associated with stress concentrations 

at grain boundary triple points, and most correspond to elevated slip activity in figure 7. Many of 

the grain boundaries show strengthening on one side and softening on the other. These 

correspond to increasing slip when approaching grain boundaries for strengthening and 

decreasing slip when approaching the boundaries for softening.  

Slip System 1 Slip System 2 Slip System 3 

330 m  

crystal 

33 m  

crystal 

3.3 m  

crystal 
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The nonlocal strengthening is quite prominent in the 3.3-µm polycrystal. As with the 

intermediate size polycrystal, the sign of the gradient effect is often flipped across the grain 

boundaries. For most grains, the gradient is strongest at the grain boundaries and decays toward 

the grain center. However, there are a few notable grains where the peak values are in the 

interiors. These correspond to locations of intersecting slip activity in figure 7. The hyperbolic 

tangent function causes the gradient effect to saturate at a level between 12 and 13 MPa. It is also 

notable that the gradient strengthening occurs on only two of the three slip systems. This reflects 

the lack of redundant slip for the idealized crystal. Only two slip systems are active at any time. 

The shear stress-shear strain response for the three polycrystal sizes is presented in figure 9. As 

with the single crystals, the stress is higher for the smaller polycrystals. The nonlinearity with 

length scale is also clearly evident. There are, however, two important distinctions from the 

single crystal results. The first is that the initial yield point varies with crystal size, whereas it did 

not for the single crystal simulations. This is thought to be related to the single crystals yielding 

throughout simultaneously whereas the polycrystal yields gradually and may build up local slip 

gradients before the macroscopic yield is evident. 

 

Figure 9.  Shear stress strain response for three different size  

scales of idealized polycrystals. 

The other notable difference is that the curves are not smooth. This could result from a 

combination of the evolution of the crystal lattice orientation, evolution of the slip gradients, and 

wave propagation in the explicit dynamic calculation. The change in lattice orientation is shown 

in figure 10 for the largest and smallest size scales. In the 330-µm polycrystal, where the strain 

localization is more pronounced, lattice reorientation is also localized. The local geometric 

softening facilitates the shear. In contrast, due to the slip continuity and gradient constraints, the 

lattice reorientation in the 3.3-m polycrystal is smoothed over a larger region relative to the 

grain size, and the lattice within a grain rotates nearly uniformly. A larger portion of the 
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polycrystal had to realign, which takes longer and results in a greater load excursion before it 

settles into a nearly steady shear mode. 

 

Figure 10.  Change in crystal lattice orientation, in degrees, at 0.025 shear strain for the 330- and 3.3-µm-high 

polycrystals. 

4. Physical Size Scale Considerations 

The motivation for imposing dislocation flux constraints is that dislocations are discrete entities 

that propagate from one element to the next as part of the slip process. Another aspect of the 

dislocation discreteness is their spacing, which is typically quantified in terms of the dislocation 

density. For well-annealed metals, a typical dislocation density is 10
6
 – 10

7
 cm

–2
; at a few 

percent deformation, this increases to 10
8
 – 10

9
 cm

–2,
 and for a very heavily deformed 

polycrystal, the dislocation density is in the neighborhood of 10
11

 cm
–2

 (7). Table 1 lists the 

element areas for each of the four single crystal simulations and the higher values of dislocation 

density for well-annealed, lightly deformed and heavily deformed polycrystalline metals. From 

these values, an average number of dislocations enclosed by an element is calculated.  

Table 1.  Average number of dislocations per element expected in the simulations of for well-annealed, lightly 

deformed and heavily deformed metals. 

 50 µm Crystal 

Elength = 0.5µm 

Earea = 0.25µm
2
 

5 µm Crystal 

Elength = 0.05µm 

Earea = 0.0025µm
2
 

1 µm Crystal 

Elength = 0.01µm 

Earea = 0.0001µm
2
 

0.5 µm Crystal 

Elength = 0.005µm 

Earea = 0.000025µm
2
 

10
7
 cm

–2
 (10

–1
 µm

–2
) 1/40 1/4000 10

–5
 2.5  10

–6
 

10
9
 cm

–2
 (10

1
 µm

–2
) 2.5 1/40 1/1000 1/4000 

10
11

 cm
–2

 (10
3
 µm

–2
) 250 2.5 1/10 1/40 

 

330 m 3.3 m 
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The entries in table 1 that are less than 1.0 indicate that not every element will contain a 

dislocation. For example, 1/4000 means that one out of every 4000 elements can be expected to 

contain a dislocation. An implicit assumption in continuum crystal plasticity models is that the 

dislocation content in the elements is sufficient for slip to be smooth and continuous. It is clear 

that these conditions are not met for a well-annealed metal using any of the single crystal meshes 

since not every element would contain even one dislocation. Using the discretization provided by 

the 50-µm-thick crystal simulation, a sufficient number of dislocations would be represented 

within each element when the crystal is heavily deformed, but not in the deformation leading up 

to that state. Considering that dislocations are usually not uniformly distributed, element sizes of 

a few microns may be necessary to assure a sufficient number of dislocations per element for a 

proper continuum crystal model representation.  

A further concern is that dislocations are usually less uniformly distributed in heavily deformed 

metals. They typically organize into walls, which create a cell structure. The cell walls have a 

very high dislocation density, and the cell interiors have a low dislocation density. Extensive 

analysis of heavily deformed nickel by Hughes and Hansen (8) shows that these cell sizes are 

greater than 0.1 µm after cold rolling to a 98% reduction, or a logarithmic strain in excess of 3.9. 

In order to have a smeared representation of such a cell microstructure within each element, the 

element size would have to be on the order of 1 µm. If the elements are small enough to resolve 

the cell structure, there are discrete lattice orientation jumps across the cell walls, not smooth 

gradients. The crystal plasticity models will have to be enhanced in an alternative manner to 

include the additional deformation mechanisms. 

4.1 Semi-discrete Dislocation Model 

In an attempt to push continuum finite element simulations to smaller length scales where 

dislocations are sparse within the elements, a semi-discrete model was developed. It is run within 

a standard explicit-dynamic finite element framework that is described in the first year DRI 

report (9). The single slip constitutive model follows the traditional formulation with three major 

modifications: (1) only elements that contain dislocations or dislocation sources can slip; (2) the 

slip increment is quantized in terms of the Burgers vector and element size; and (3) elements 

designated to contain dislocation nucleation sources have a reduced flow strength. In addition to 

these slip model modifications, the code tracks dislocations moving from one element to another, 

and it also tracks the total number of dislocations that have traversed each element. Details of the 

model and complete results have been reported elsewhere (1). 

Results from a two-dimension, simple shear simulation, 50 µm wide and 100 µm high, are 

presented in figures 11 and 12. The mesh was 400  800 elements, for an element size of  

0.125 µm. There were 158 dislocation nucleation sites distributed randomly in the mesh, 

providing a nucleation site density of approximately 3.2  10
6
 cm

–2
. This is in the range of the 

dislocation density for a well-annealed metal. 
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Figure 11.  Number of dislocations passing through each element for the discrete dislocation simulations. The center 

80 µm is omitted from the 100-µm crystal to highlight the gradients at the top and bottom surfaces. 

 

Figure 12.  Number of dislocations currently within each element for the discrete dislocation simulations. The center 

80 µm is omitted from the 100-µm crystal to highlight the gradients at the top and bottom surfaces. 

The number of dislocations that passed through each element at a shear strain of 0.01 is 

presented in figure 11. Only the top and bottom 10 µm of the 100-µm model are shown since 

most of the center section appears as lines connecting the upper and lower portions. The most 

obvious feature is the discrete deformation. Slip occurs only along slip systems containing the 

nucleation sites. The slip traverses the crystal vertically along lines of elements that contains the 

slip planes. The remaining elements are elastic. An important feature of figure 11 is the slip 

gradient. Since dislocations cannot pass through the upper and lower boundaries, the slip 

(number of dislocations passed) at these surfaces is zero. The greatest number of dislocation has 

passed near the center of the crystal.  

All of the dislocations must lie between the nucleation sites where they originate and the crystal 

boundaries. The slip distribution is directly related to the current positions of the dislocations. 

The dislocation positions are shown in figure 12. As with figure 11, only the upper and lower  

10 µm are shown for the 100-µm-thick crystal. Dislocations of opposite sign originating at the 

100 m 

100 m 
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dipoles are shown by the red and blue. Dislocations of one sign move to the top and those of the 

other sign move to the bottom. The dislocation density is greatest at the boundaries and tapers off 

toward the center of the crystal. This is the classic picture of an edge dislocation pile-up. The 

dark red and blue elements on the crystal interior indicate the location of the dipole nucleation 

sites where dislocations can accumulate before gliding toward the boundaries. 

Each element can contain multiple dislocations, with the maximum number being four for this 

simulation. The gradient is evident in the sparseness of elements containing dislocations. Near 

the surface, most elements along the slip planes contain dislocations, but as the distance from the 

boundary increases, the elements containing dislocations become increasingly sparse.  

While the results of this simple semi-discrete model show dislocation pile-ups and other 

expected features not captured by standard continuum models, the specific approach is will not 

produce meaningful results at smaller size scales. The overriding issue is the singular stress field 

from the dislocations dominating the solution as the mesh is refined to resolve the stress 

gradients. The stress field is driven by the quantization of slip, which provides a higher stress 

magnitude related to the better resolution of the singularity at finer spatial resolutions. The 

unresolved singularity dominates and pollutes the solution. There does not appear to be a range 

of element sizes that will both resolve the stress field and not suffer from the effects of the 

singularity. Perhaps other semi-discrete approaches could be successful; this one was not. 

Discrete dislocation dynamics simulations (10, 11) explicitly account for dislocations and their 

interactions and provide one means for incorporating dislocation microstructure at finer spatial 

resolutions. Finite element methods have been coupled with the discrete dislocation simulations 

though several approaches (12–14). These types of formulations should be employed at the finer 

spatial resolutions in multiscale modeling schemes. There could be a transition from traditional 

continuum crystal plasticity to proper discrete representation when the spatial resolution is fine 

enough (15). 

5. Conclusions 

A nonlocal crystal plasticity model, motivated by slip continuity between neighboring finite 

elements, was implemented in a large-scale parallel finite element code. This is the first large-

scale explicit implementation, and the first solution illustrating gradient effects at grain 

boundaries in a large, dynamic polycrystal simulation. The results show the expected trends of 

decreasing the severity of gradients and increasing strength with decreasing physical size. In 

terms of the original objectives, the program was successful. 

It is, however, a qualified success. The gradient effects are only significant on the length scale of 

approximately 100 of µm or less. It was determined that spatial discretization for such problems 

can be on the order of, or smaller than, the scale of the underlying microstructure. For lightly 



18 

deformed metals, only a small fraction of the elements would contain dislocations, and the 

continuum crystal plasticity model will not apply. For heavily deformed metals with a 

dislocation cell structure, the element size can be on the order of the cell structure. The discrete 

orientation jumps and deformation mechanisms associated with the dislocation cells are not 

adequately represented by traditional crystal plasticity or the gradient model.  

Hence, while the model can be run to obtain results at small size scales, the solutions will not 

capture the additional physical mechanisms associated with microstructure at the enhanced 

resolution. The model will not provide significant insight into deformation at the sub-micron 

scale since the model does not adequately represent the structure or mechanisms at the sub-

micron scale. 
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7. Transitions 

An ARL Technical Report (ARL-TR-6307) with a more complete description of the models and 

results is in press. Results of the model limitations were discussed at the Materials in Extreme 

Dynamic Environments Fall Meeting. 
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